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Abstract. SL(N,C) is the phase space of the PoissonSU(N). We explicitly calculate the
symplectic structure ofSL(N,C), define an analogue of the Hamiltonian of the free motion on
SU(N) and solve the corresponding equations of motion. Velocity is related to the momentum
by a nonlinear Legendre transformation.

1. Introduction

The theory of Poisson groups [1–5] (and their phase spaces [6–9]) allows us to consider
deformations of known mechanical models. Several low-dimensional examples, related to
Poisson symmetry, have already been investigated [10–15]. All these models certainly have
their quantum-mechanical counterpart, the underlying Poisson group being replaceable by
the corresponding quantum group. It is natural to first study the Poisson case as technically
simpler. We obtain interesting classical systems, and, at the same time, we get some idea
about the corresponding quantum systems.

Recall that if we agree to generalize ordinary configuration manifolds by using Poisson
manifolds, the ordinary phase spaces (cotangent bundles) have to be replaced by symplectic
groupoids of these Poisson manifolds [6–9] (we still call them phase spaces). If the Poisson
manifold is a Poisson group, its phase space can be described quite explicitly [5, 8] (this
is not true in the general case). Namely, let(g, δ) be the (tangent) Lie bialgebra of our
Poisson group. On the Lie algebram of the corresponding Manin triple (we callm just
the doubleof (g, δ)), there is the Drinfeld’s canonicalr-matrix rD. It defines two Poisson
structures on the Lie groupM corresponding tom:

(1) the difference of the right and left translation ofrD (the Sklyanin bracket). It
defines a Poisson Lie group structure called theDrinfeld double (of the original Poisson
group). This Poisson structure is always degenerate (it vanishes at the group unit). The
corresponding Lie bialgebra structure onm is said to be theDrinfeld doubleof (g, δ).

(2) Thesumof the right and left translation ofrD. This Poisson structure is interesting
for us because it gives the symplectic structure of the phase space of the initial Poisson
group [5, 8]. We refer toM equipped with this Poisson structure as to theHeisenberg
double (of the original Poisson group).

In this paper we calculate the explicit form of Poisson brackets on the phase space of the
PoissonSU(N) group, i.e. onSL(N,C) (as a real manifold). We also consider a natural
candidate for the Hamiltonian of the free motion. It turns out that the projections of the
phase trajectories ontoSU(N) are ‘big circles’ (shifted one-parameter subgroups), as in the
usual case. The (constant) velocity is, however, a nonlinear function of the momentum, so
we have an example of a deformed Legendre transformation.
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The case ofSU(2) was presented in [13], in a direct (tedious) way—without referring to
the compactr-matrix notation. The above-mentioned deformed character of the Legendre
transformation in this case was shown in [15] to be the reason why the free dynamics
reduced to the homogeneous space (Poisson sphere) yields really a deformation of usual
free trajectories on the sphere.

The paper is organized as follows. In section 2 we clarify when the Manin Lie algebra
(the double) of a Lie bialgebra(g, δ) coincides with the complexification ofg (recall [4]
that this is the case ofg = su(N)), and we obtain a useful formula for the Drinfeld’s
canonicalr-matrix rD on the double. In section 3 we calculaterD for g = su(N) in terms
of matrix units. This allows us to effectively write down the Poisson brackets of matrix
elements ofSL(N,C). In section 4 we introduce the free Hamiltonian, which is one of
the most natural functions onSL(N,C). We solve the equations of motion and analyse the
bijectivity property of the ‘Legendre transformation’.

2. The double and complexification

Let g be a real Lie algebra and letb(·, ·) be a non-degenerate invariant symmetric bilinear
form ong. On the complexificationgC we then have the non-degenerate invariant-symmetric
bilinear formB := Im bC, with respect to which bothg and ig are isotropic. We are thus
almost in the situation of a Manin triple: all properties are satisfied except that ig is not a
Lie subalgebra (unlessg is Abelian).

Of course, any isotropic Lie subalgebrah in gC, which is complementary tog, yields a
Manin triple and the corresponding Lie bialgebra structure ong. The question now arises,
which Lie bialgebra structures ong are obtained in this way.

A subspaceh of gC is complementary tog if it is of the form

h = {ix + Rx : x ∈ g} (1)

whereR : g→ g is a linear map. Such a subspace is isotropic (with respect toB) if and
only if R is skew-symmetric with respect tob:

b(Rx, y) = −b(x, Ry) x, y ∈ g. (2)

This subspace is a subalgebra if and only if

[Rx,Ry] − R([Rx, y] + [x,Ry]) = [x, y] x, y ∈ g. (3)

Let s ∈ g ⊗ g denote the inverse ofb. We shall use the same letter fors considered as a
linear map fromg∗ to g. The compositionr := Rs is then a linear map fromg∗ to g, which
we can also identify with an element ofg ⊗ g (an element ofg ⊗ g defines a linear map
from g∗ to g by the contraction in the first argument). In terms of thisr ∈ g⊗ g, condition
(2) means thatr is antisymmetric, and condition (3) is equivalent to

[[r, r]] = [[s, s]] (4)

where [[w,w]] for w ∈ g⊗ g denotes the ‘Leningrad school’ bracket

[[w,w]] := [w12, w13] + [w12, w23] + [w13, w23]

(for antisymmetric elements, it coincides with one half of the Schouten bracket). In the
terminology of [14], it means thatr + is is an imaginary quasitriangular classicalr-matrix:

[[r + is, r + is]] = 0.



Free motion on the PoissonSU(N) group 6537

It is easy to show that the Lie bialgebra structure ong defined byr (by taking the coboundary
of r), coincides with the one defined by the Manin triple(gC; g, h):
B([ix + Rx, iy + Ry], z) = b([Rx, y] + [x,Ry], z)

= b(y, adz Rx)− b(x, adz Ry)

= (b ⊗ b)(x ⊗ y, (id⊗ adz)r)+ (b ⊗ b)(x ⊗ y, (adz⊗ id)r)

= (B ⊗ B)((ix + Rx)⊗ (iy + Ry), adz r).

We summarize this discussion in the following proposition, whereg, b are as above and
B = Im bC, s = b−1.

Proposition 2.1.There is a one-to-one correspondence between Manin triples(gC; g, h)
realized ingC (with the scalar productB) and imaginary quasitriangular classicalr-matrices
r + is on g. The correspondence is given by (1) andr = Rs.

The Drinfeld double quasitriangular structure ongC is given by the canonical element

wD = ek ⊗ f k ∈ g
C ⊗ g

C (5)

(summation convention), whereek is a basis ofg and f j is the dual (with respect toB)
basis inh. One can easily see thatf j = r(ej )+ is(ej ), whereej is the dual basis ing∗.

The skew-symmetric partrD of wD is given by

rD = 1
2ej ∧ [r(ej )+ is(ej )] = r + 1

2ej ∧ (isjkek). (6)

Note that bothwD andrD are elements of the real tensor productV ⊗R V , whereV := gC

is treated as a real vector space. They may be, however, treated as (real) elements of the
complexification

(V ⊗R V )C = V C ⊗C V C

which is much more convenient. In order to distinguish the imaginary unit i arising in
the complexification ofV from the imaginary unit arising in the complexification ofg, we
denote the latter byJ : g→ g. Recall, that anyv ∈ V may be represented as the sum

v = v+ + v− v± := 1

2

(
v ± 1

i
Jv

)
and we have

(J v)± = ±iv± (we have also [v±1 , v
±
2 ] = ±[v1, v2]±).

In a fixed basis, it is also convenient to set

ej = ∂j + ∂j where∂j := e+j , ∂j := e−j .
In particular, the last term in (6) may be written as follows

1
2s
jk(∂j + ∂j ) ∧ (i∂j − i∂k) = isjk∂j ∧ ∂k.

This term will be denoted bys∧. Note that

s∧ = ∧(id⊗J )s (7)

where∧(a ⊗ b) := a ∧ b is the antisymmetrization.
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3. Drinfeld and Heisenberg double of PoissonSU (N )

Let b denote the invariant scalar product ong := su(N) given by

b(X, Y ) := −1

ε
trXY (8)

(ε is a parameter). Leth = sb(N) be the Lie subalgebra ingC = sl(N,C) consisting of
complex upper-triangular matrices with real diagonal elements (and trace zero). It is easy to
see thath is complementary tog and isotropic with respect toB = Im bC, hence(gC; g, h)
is a Manin triple. It corresponds to the standard PoissonSU(N) [4]. Our aim is to calculate
rD = r+ s∧ given by (6). We first introduce the typical elements ofsu(N) defined in terms
of usual matrix unitsej k = ej ⊗ ek:

Fj
k := ej k − ekj Gj

k := i(ej
k + ekj ) Hjk := i(ej

j − ekk)
so that

Fj
k, Gj

k (j < k) Hj,j+1 (16 j 6 N − 1) (9)

is a basis ofsu(N).

Lemma 3.1.We have

r = ε

2

∑
j<k

Fj
k ∧Gjk (10)

s = ε

2

∑
j<k

(
Fj
k ⊗ Fj k +Gjk ⊗Gjk + 2

N
Hjk ⊗Hjk

)
. (11)

Proof. It is easy to first calculateR defined in (1). Since ix+Rx ∈ sb(N) for x ∈ su(N),
it is easy to calculate the lower-triangular part ofRx (it is the corresponding part of−ix)
and the diagonal part ofRx (it is the diagonal part of−ix plus something real, hence zero).
We obtainRHjk = 0, RFj k = Gj

k, RGjk = −Fj k. SinceFj k, Gjk (j < k) form an
orthogonal set with

b(Fj
k, Fj

k) = 2

ε
= b(Gj k,Gj k)

and they are orthogonal to allHjk, it is easy to check that contraction of ther given in (10)
with the basis elements (usingb) coincides with the action ofR on these elements.

In order to prove (11), first note that only the last term needs to be explained (due to
the orthogonality). The scalar product on the Cartan subalgebra spanned byHjk is naturally
the restriction of the scalar product defined on the space spanned byHj := iej j (the Cartan
for u(N)) by the same formula:

b(Hj ,Hk) = −1

ε
trHjHk = 1

ε
δjk.

In order to invertb on the subspace, it is sufficient to invert it on the bigger space, which
is easy:

ε
∑
j

Hj ⊗Hj (12)

and project it orthogonally on the subspace. Since

Hj = 1

N

∑
k

Hk + 1

N

∑
k

(Hj −Hk)

is the orthogonal decomposition, we just have to replaceHj in (12) by 1
N

∑
k(Hj − Hk).

This indeed gives (11). �
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Now we can expressr, s∧ and finally rD in terms of ‘holomorphic’ and
‘antiholomorphic’ vectors∂j k = (ej k)+, ∂j k = (ej k)−. This will enable us to calculate the
Poisson brackets of basic coordinate functions (and their complex conjugates) onSL(N,C).

A straightforward insertion ofej k = ∂j k + ∂j k, Jej k = i∂j k − i∂j k into (10) and (11)
together with (7) gives

r = r(2,0) + r(0,2) + r(1,1)

where

r(2,0) = r(0,2) = iε
∑
j<k

∂j
k ∧ ∂kj r(1,1) = iε

∑
j<k

(∂j
k ∧ ∂j k − ∂kj ∧ ∂kj ) (13)

and

s∧ = −iε

(
1

N
I ∧ I −

∑
j,k

∂j
k ∧ ∂j k

)
(14)

whereI :=∑k ∂k
k.

Ther-matrix rD = r+s∧ on sl(N,C) defines two Poisson bivector fields onSL(N,C):

π±(g) = rD(g ⊗ g)± (g ⊗ g)rD g ∈ SL(N,C).
Drinfeld double of the PoissonSU(N) is the Poisson group(SL(N,C), π−). The
Heisenberg doubleof the PoissonSU(N) is the Poisson manifold(SL(N,C), π+). It
plays the role of the phase space (cotangent bundle) of the PoissonSU(N). The bivector
field π+ is known to be non-degenerate ([5, 8]), becauseSL(N,C) globally decomposes
(by the Iwasawa decomposition) ontoG = SU(N) andG∗ := SB(N), i.e. every element
g ∈ SL(N,C) is a product of the form

g = uβ u ∈ G, β ∈ G∗

with uniquely definedu, β. Here SB(N) is the connected subgroup ofSL(N,C),
corresponding to the Lie algebrah = sb(N) (i.e. the Poissondual of the PoissonSU(N)).

Using the compact notation

{g1, g2}abcd = {gac , gbd} (g1g2)
ab
cd = (g ⊗ g)abcd = gac gbd

we can now write the Poisson brackets of matrix elements ofg for π± as follows

{g1, g2}± = ρg1g2± g1g2ρ {g1, g2}± = w′g1g2± g1g2w
′ (15)

whereρ := r(2,0)D = r(2,0) is the purely holomorphic part ofrD and

w′ := −iε

(
1

N
I ⊗ I −

∑
k

∂k
k ⊗ ∂kk − 2

∑
j<k

∂j
k ⊗ ∂j k

)
is the antiholomorphic–holomorphic part (without antisymmetrization) ofrD, i.e. r(1,1)D =
r(1,1) + s∧ = w′ − w′21.

The Poisson structure onSL(N,C) viewed as the Drinfeld double of the PoissonSU(N)
is therefore described by the brackets

{gjl , gjm}− = iεgjl g
j
m (l < m)

{gjl , gkl }− = iεgjl g
k
l (j < k)

{gjl , gkm}− = 2iεgjmg
k
l (l < m, j < k)

{gjl , gkm}− = 0 (l > m, j < k)
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as far as the holomorphic variables are concerned (quite standard), and

{gjl , gkm}− = iε

[
δjk
(
g
j

l g
j
m + 2

∑
a>j

gal g
a
m

)
− δlm

(
g
j

l g
k
l + 2

∑
a<l

gjag
k
a

)]
(16)

for the mixed case (this is nothing but the Poisson version of commutation relations for the
real quantum groupSL(N,C), cf [17], formulae (3.77)–(3.80)).

The Heisenberg double Poisson structure onSL(N,C) is given by

{gjl , gjm}+ = −iεgjl g
j
m (l < m)

{gjl , gkl }+ = iεgjl g
k
l (j < k)

{gjl , gkm}+ = 0 (l < m, j < k)

{gjl , gkm}+ = 2iεgjmg
k
l (l > m, j < k)

{gjl , gkm}+ = iε

[
− 2

N
g
j

l g
k
m + δjk

(
g
j

l g
j
m + 2

∑
a>j

gal g
a
m

)
+ δlm

(
g
j

l g
k
l + 2

∑
a<l

gjag
k
a

)]
. (17)

It is sometimes convenient to replace the complex conjugate variableg by g†—the
Hermitian conjugate ofg. In this case the second equality in (15) is replaced by

{g†1, g2}± = g†1[(τ ⊗ id)w′]g2± g2[(τ ⊗ id)w′]g†1 (18)

whereτ denotes the transposition. If we set

w := −(τ ⊗ id)w′ = iε

(
1

N
I ⊗ I −

∑
k

∂k
k ⊗ ∂kk − 2

∑
j<k

∂k
j ⊗ ∂j k

)
we can write these brackets as follows

{g†1, g2}± = −g†1wg2∓ g2wg
†
1. (19)

Note that the antisymmetric part1
2(w − w21) of w coincides withρ, the symmetric part

equals

w − ρ = 1

2
(w + w21) = iε

(
1

N
I ⊗ I − P

)
(20)

whereP is the permutation, and iw is the infinitesimal part of theR-matrix for theAN -series
(cf [18, 17]),

R = I ⊗ I + iw + . . .
(when q = 1 + ε + · · ·). In particular,w satisfies the classical Yang–Baxter equation
[[w,w]] = 0 (this can be shown also by purely ‘classical’ considerations).

4. Free motion on PoissonSU (N )

The Poisson structure onSL(N,C) viewed as the Heisenberg double of PoissonSU(N)

(analogue of the cotangent bundle) is given by

{g1, g2} = ρg1g2+ g1g2ρ {g†1, g2} = −g†1wg2− g2wg
†
1 (21)

(we have dropped the subscript ‘+’, for simplicity).
In the non-deformed case of the cotangent bundleT ∗G to G = SU(N), the free

motion is governed by the HamiltonianH : T ∗G → R proportional to the square of the
momentum, given by a bi-invariant metric onG. In other words, there is a distinguished
quadratic function on the dualg∗ of the Lie algebrag of G (defined by the Killing form),
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andH is just the pullback of this function toT ∗G (from the left or from the right—it does
not matter since the quadratic function is invariant under coadjoint action ofG; also: it is
a Casimir for the Poisson structure ong∗).

When T ∗SU(N) is replaced bySL(N,C), it is still easy to find a Hamiltonian with
similar properties, namely

H(g) := 1
2 tr g†g. (22)

Note that it depends only on the ‘momenta’β ∈ G∗:
H(g) = H(uβ) = 1

2 tr(uβ)†uβ = 1
2 trβ†β = H(β).

It does not matter which way we decomposeg:

H(g) = H(β ′u′) = 1
2 tr(β ′u′)†β ′u′ = 1

2 trβ ′†β ′ = H(β ′)
which means thatH as a function onG∗ is invariant with respect to the dressing action:

H(β) = H(uβ) = H(uβ · uβ) = H(uβ)
(notation of [8, 15]). It means thatH is a Casimir onG∗.

We shall now examine the equations of motion. We have

ġ = {H, g} = 1
2 tr1{g†1g1, g2} = 1

2 tr1({g†1, g2}g1+ g†1{g1, g2})
= 1

2 tr1(−g†1wg2g1− g2wg
†
1g1+ g†1ρg1g2+ g†1g1g2ρ)

= − 1
2 tr1[g†1(w − ρ)g1g2+ g†1g1g2(w − ρ)]

where tr1 means the (partial) trace—with respect to the first indices only. Using (20) and
the identity

tr1 g
†
1g1g2P = gg†g = tr1 g1g

†
1Pg2

(P denotes the permutation, as in (20)), we obtain

ġ = iε

[
gg†g − 1

N
(tr g†g)g

]
. (23)

Substituting hereg = uβ, we obtain

u̇β + uβ̇ = iε

[
uββ†u†uβ − 1

N
(trβ†β)uβ

]
or,

u−1u̇+ β̇β−1 = iε

[
ββ† − 1

N
(trββ†)

]
.

Since the right-hand side belongs tog = su(N), we haveβ̇ = 0, which was in fact also
clear before, becauseH is a Casimir onG∗. Therefore we are left with the condition of
constant velocity

u−1u̇ = F(β) := iε

[
ββ† − 1

N
(trββ†)

]
. (24)

It follows that as far as configurations are concerned, the motion looks exactly as the non-
deformed one: the particle moves on the ‘big circles’ (shifted one-parameter subgroups)
with constant velocity. The difference consists of the momentum variables, which have
a nonlinear nature. The functionF above tells how to compute the velocity when the
momentum is given. It plays the role of the inverse Legendre transformation.

A general notion of the Legendre transformation in the case of phase spaces of Poisson
manifold is investigated in [19]. Here we shall show only two properties of the map
F : SB(N)→ su(N).
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Proposition 4.1.
(1) F intertwines the dressing action with the adjoint action:

F(uβ) = uF(β)u−1.

(2) F is bijective.

Proof. The first property follows from the fact that ifuβ = β ′u′, thenβ ′β ′† = uββ†u†.
To prove the second, we first show that the map

SB(N) 3 β 7→ ψ(β) = ββ† ∈ P := {p : p > 0, detp = 1}
is a bijection. Define a mapφ : P → SB(N) by

φ(p) := β whereβ is such thatp
1
2 = βu (Iwasawa).

We haveψ ◦ φ = id, sinceββ† = (βu)(βu)† = p 1
2p

1
2 = p. But φ is also surjective, since,

given β ∈ SB(N), it is sufficient to consider its polar decompositionβ = p0u0 and notice
thatφ(p2

0) = β.
It remains to prove that the map

P 3 p 7→ h = p − 1

N
trp ∈ i · su(N)

is a bijection. We first show thath determinesp. Choose an orthonormal basis in which
h is diagonal, thenp is also diagonal in that basis. Letpi and hi be the corresponding
eigenvalues, then

λi = pi − 〈p〉 where〈p〉 := 1

N

∑
j

pj .

If λi come from somep, then

λi + 〈p〉 > 0 (λ1+ 〈p〉) · . . . · (λN + 〈p〉) = 1.

Since the function

[max
j
(−λj ),∞[3 t 7→ f (t) := (λ1+ t) · . . . · (λN + t) ∈ [0,∞[

is a (monotonic) bijection, there is exactly onet0 such thatf (t0) = 1, hence〈p〉 = t0 and
this completely determinesp by pi = λi + 〈p〉. It is easy to see thatpi = λi + t0, where
f (t0) = 1, defines somep ∈ P for everyh (because thenpi > 0 andp1 · . . . · pn = 1). �

Finally, we remark that in the limitε→ 0, the model becomes the undeformed one:

β ∼ I + εξ ξ ∈ sb(N) ≡ su(N)∗ F(β) ∼ i(ξ + ξ †)
and

H(β)− 1
N

ε2
∼ 1

2
tr ξξ †.

In view of the existence of a Poisson isomorphism betweenSB(N) and su(N)∗ [20], it
would be interesting to find how the functionH on SB(N) is expressed as a function on
su(N)∗.
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